skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Krol, Andrzej"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gimi, Barjor S.; Krol, Andrzej (Ed.)
  2. Gimi, Barjor S.; Krol, Andrzej (Ed.)
  3. Gimi, Barjor S.; Krol, Andrzej (Ed.)
  4. Gimi, Barjor; Krol, Andrzej (Ed.)
    An important goal in neuroscience has been to map the surface of the human brain, and many researchers have developed sophisticated methods to parcellate the cortex. However, many of these methods stop short of developing a framework to apply existing cortical maps to new subjects in a consistent fashion. The computationally complex step is often the initial mapping of a large set of brains, and it is inefficient to repeat these processes for every new data sample. In this analysis, we propose the use of a library of training brains to build a statistical model of the parcellated cortical surface and to act as templates for mapping new data. We train classifiers on training data sampled from local neighborhoods on the cortical surface, using features derived from training brain connectivity information, and apply these classifiers to map the surfaces of previously unseen brains. We demonstrate the performance of 3 different classifiers, each trained on 3 different types of training features, to accurately predict the map of new brain surfaces. 
    more » « less